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A micro-mechanics model is developed to analyze the stress distributions and fracture 
energies associated with crack propagation and fiber pull-out in reinforced composites. The 
stress and work mechanisms of interfacial debonding, fiber deformation, and the frictional 
work of fiber pull-out are considered as semi-independent contributions to fracture tough- 
ness. The theoretical expressions of Cottrell for frictional work W ,  and Outwater and 
Murphy for fiber deformational work W, are obtained as special relations in a general 
relation for the total work W, = W, -1- W, + W, where W, defines the matrix shear 
work for interfacial debonding of fiber and matrix. Three dimensional diagrams of fracture 
energies W,, Ws, or W F  versus interfacial shear bond strength A, and frictional shear stress 
A, identify regions of optimized fracture energy. The influence of environmental degra- 
dation of bond strength upon fracture energy is analyzed in terms of the theory. 

I NTRO D U CTlO N 

The fracture energy in fiber reinforced composites, where the crack propa- 
gates perpendicular to the axis of fiber reinforcement, is accounted for by 
micro-mechanics models for fiber pull-out.’ - 5  The major emphasis in the 
theories of Cottrell, Cooper, and Kelly involves frictional work W ,  expended 
in extracting the fiber from the matrix.’-4 Outwater and Murphy consider 
the deformational work W, contributed by the tensile strain of the fiber in 
the region of interfacial d e b ~ n d i n g . ~  Linear elastic analysis for the shear 
stress distributions around bonded fibers in a pull-out geometry is provided 

t Presented at  the Symposium on “Interfacial Bonding and Fracture in Polymeric, 
Metallic and Ceramic Composites” at  The Univ. of California at Los Angeles, Nov. 13-15, 
1972. This Symposium was jointly sponsored by the Polymer Group of So. California 
Section, ACS and Materials Science Department, U.C.L.A. 
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246 D. H .  KAELRLL: 

by Greszczuk6 and L a ~ r e n c e . ~  A n  elastic-plastic analysis for the case of an 
elastic fiber bonded to a ductile matrix has been developed by Lin, Salinas 
and Ito.' Recent experimental studies of interface contributions to fracture 
energy strongly suggest the need to consider both the shear bond strength 1, 
and the frictional shear stress ,IF between fiber and matrix i n  ii more detailed 
analysis of fracture energy.9 l o  

This discussion develops a generalized model for fracture energy in uni- 
axially reinforced composites. One objective of the analysis is to provide an 
analytic definition of the role played by variable magnitudes of the interfacial 
shear stresses 1" and A F ,  in conjunction with other composite properties, 
upon fracture energy. A second objective is to isolate the separate contri- 
butions of matrix shear work W,, interfacial frictional work W,, and fiber 
tensile work W,, on the total fracture energy W = W, + W ,  + W,. Signifi- 
cant variables to be analyzed are identified in Table I. 

TABLE 1 
Nomenclature of significant variables 

Forces 

p =L fiber pull out force 
q incremental shear force at bonded interface 
J' = incremental frictional force at debonded interface 

Stresses 

As = shear stress at bonded interface 
ho 
hf i  -= frictional shear stress 
ub =- fiber tensile strength 

boundary shear stress at fracture 

Mocluli 
E = fiber Young's modulus 
C =- matrix shear modulus 

Works 

Ws =- work for shear debonding 
W F  =. frictional work for fiber pull-out 
W ,  tensile work of fiber deformation 
W = total work of fiber pull-out 

Getiernl 

V = volume fraction of fiber 
A =- cross section area of unit cell 

LF --- fiber pull-out length 
f.h = fiber debond length 

ph/A  7 fracture force/unit area 
W / A  -- fracture work/unit area 

a shear stress concentration factor 
ro  -- fiber radius 
0 .=. y l-ro thickness of the matrix annulus 
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FRACTURE ENERGY IN COMPOSITES 247 

FRACTURE STRESS AND ENERGY 

The square and hexagonal cells for uniaxial packing of uniform circular 
fibers are shown in Table I1 along with significant parameters related to 

TABLE I I  
Packing geometries in regular uniaxial fiber arrays 

Lattice type Square Hexagonal 
~ ~ .~ 

Unit geometry 

I -L- I  
Fibers/Unit Cell 2.0 3.0 
Fiber volume fraction (v) 2a(rO/L)* 1.1548n(ro/L)’ 
Unit Cell Area ( A )  27irOzl V 3rrroZ/ V 
o = ( r ,  ~ ro)  
v at ( r l  - ro) ~~ 0 0.785 0.906 

rot(a/c31’2 - 21 ro [ l .074 (a /V )1 /z  - 21 

fiber packing. The unit cell models of Table 11 illustrate a circular fiber 
centered within the partial cross sections of nearest neighbor fibers. The fiber 
separation distance a = r ,  - ro describes an  annular region of matrix about 
the central fiber. A convenient basis for calculation of the shear stresses when 
the central fiber I S  subject to a pull out force P is illustrated in the schematics 
of Figure 1. 

The upper view of Figure 1 shows a cross section of the central fiber of 
diameter 2ro imbedded in an annular layer of matrix of thickness N = ( r l  - 
ro). A length L of the fiber is debonded but interacts with the matrix to pro- 
vide a total frictional force f :  The interface to the left of the bond boundary 
at x = 0 interacts via bonding shear forces whose summation is cq. Since the 
applied force and the reactive interfacial forces are centrally symmetric, 
the moments of force vanish and the equation for steady state equilibrium is: 

P = C J + C 4  ( 1 )  

The lower schematic of Figure I describes the balance of forces for an incre- 
mental length dx of fiber at some distance (-x) to the left of the bond 
boundary at x = 0. By assuming the fiber is continuous in the bonded region 
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248 D. H. KAELDLE 

I I 
x = o  rL7 

- P  

FIGURE 
composite 

1 
material. 

Schematic of forces and displacements about the central fiber in a unit cell of 

so that q =; 0 a t  x = - m the derivation of Appendix A provides the follow- 
ing relation for the bonded shear stress at  the fiber-matrix interface when 
Cf = 0: 

(2  

(3) 

(4) 

The bond shear stress function is expressed in Eq. ( 2 )  and Eq. (3) as a simple 
exponential decay form with maximum shear stress A0 a t  the bond boundary 
(x = 0). The stress decay factor a has dimensions of reciprocal length and 
represents a measure of shear stress concentration. 

Substituting the relation As = -q/2n d x  into Eq. ( 2 )  and rearranging into 

ctP exp (ax) 

2nr0 
Is = 

I ,  = I ,  exp (ax) 

M = (2C/E)1’2/r0 In ( r l / r o )  

or  : 

where 
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FRACTURE ENERGY IN COMPOSITES 249 

integral form provides the following relation : 
r - m  

9 = -2nroA0 exp (ux) dx == Ps .I x=n  

Evaluating this integral provides the relation 

P, = 2nrOAo/u 

where Ps is the pull-out force required to generate a critical boundary stress 
AO for interfacial debonding. The work of propagating failure a distance L 
into the matrix is: 

Ws = PsL = 2nrnA0L/u (6) 

Eqs. (5) and (6) provide preliminary expressions for the force and energy 
requirements for interfacial debonding due to shear of the matrix. 

When a constant frictional stress ,IF = f/2nrn dx exists between fiber and 
matrix in the region L of debonding the force summation 2 , f i s  described by 
the following relation: 

When a debonded fiber breaks a distance LF inside the matrix the frictional 
work of pull-out is given as: 

If= 2zrnAFL = PF (7) 

L = n  

L F 

w F = - J  PF dL = nro1FLF2 (8) 

Although more complicated frictional stress and work functions may be 
postulated, Eqs. (7) and (8) are adequate for this analysis. 

An additional contribution to the work of interfacial fracture involves the 
elastic work of tensile deformation W ,  in the fiber length L which is lost at 
the instant of fracture. Outwater and Murphy consider the case for constant 
frictional stress 1,. = f/2nrn dx to show that :’ 

where CT is the tensile stress in the unconstrained fiber. Evaluating the above 
integral and substituting the relation L = r,a/2AF provides the following 
relation : 

nro2a2L 
W” = - 

6 E  
for the fiber deforniational work. 

P as: 
The above relations identify two contributions to the total pulling force 

P = Ps i- P ,  ( 1  1) 
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2 50 D. H. KAELBLE 

and three contributions to the work of pull out as: 

w = w s  + WF + w, 

P = 2nr0[(A0/a) + A,L] < nro2a6 

(12) 

(13) 

Combining Eqs. (5 )  and (6) provides the following statement: 

The inequality in Eq. (13) describes the upper limit for the pull-out force P 
in terms of the tensile strength 0 6  of the fiber. Rearrangement of Eq. (13) 
provides a new relation for the maximum debond length Lb, when P = 

nrO2a6, as follows: 

L6 = ( 1 / A F ) [ ( r O a b / 2 )  - 2 (14) 

By applying a similar criteria for the works of fracture, that P = PI, = 
xro2a6, L = L,, and a = a b  the following special relations result: 

as the maximum works for fracture per unit cell. 
In order to evaluate the specific performance per unit area A of composite 

cross section area, it is convenient to incorporate functions of fiber volume 
fraction V into the above relations. Utilizing the relations of Table II i t  is 
readily shown that Eq. (14) can be reexpressed as: 

The specific fracture work W/A involving the three contributions defined by 
Eq. (15) through Eq. (18) for the respective W S b ,  WBb, and w,:b contributions 
becomes : 

= (wS6 f WB6 + wF6)/A 

The fracture stress P, =;: nrO2a6 per unit area A is given by the following 
relation : 
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FRACTURE ENERGY IN COMPOSITES 25 1 

For the square fiber packing with 0 < V < 0.785 the volume fraction func’ 
tions are: 

f1(v) = In (rl /ro) = {In [ ( n / ~ ) ” *  - (22) 

f2(V) = v (23) 

f,(V = (wd1’2 (24) 

Hexagonal packing with 0 < V d 0.906 describes volume functions: 

f l ( V )  = I n  ( r , / r o )  = {In [1.074(n/V)1/2 - ll)l’z (25) 

f 2 (  v> = 2V/3 (26) 

f 3 ( V )  = 2 ( V / ~ ) ” ~ / 3  (27) 

Other types of irregular or random packing would be expected to provide 
volume fraction functions intermediate between those developed above for 
square and hexagonal packing. 

OPTIMIZATION OF FRACTURE ENERGY 

A clarification of the factors which produce optiniization of the fracture 
energy in reinforced composite materials remains as one of the important 
current objectives in composite design. The influence of the interfacial shear 
stresses I$, and defined in the present model may be graphically illustrated 
by assuming constant values for the paranieters tabulated in Table 111 

TABLE I11 

Typical physical properties of a uniaxially reinforced graphite fiber-polymer matrix 
composite material 

-~ ~~ ~ ~ ~~ .~ ~~ ~ ~~~ 

fiber radius = ro = 2.10-“ in ”_ 5 pni 
fiber tensile strength = u ~7 2.105 psi 
fiber Young’s modulus E : 5.10’ psi 
fiber volume fraction = V - =  0.50 
matrix shear modulus = G -- 1.5 .  lo5 psi 
fiber packing = square (4 nearest neighbors) 
volume fraction functions: f ; ( V )  = 0.64,f2(V) = 0.50, f3( V )  = 0.266 

and solving for L,, defined by Eq. (19) and the specific fracture energies defined 
in Eq. 20. The physical properties identified in Table 111 are representative of 
a uniaxially reinforced graphite fi her-epoxy matrix composite material. 

Calculations involving Eq. (19) provide the response surface of interface 
debonding Lb, plotted on the abscissa of Figure 2, where shear debonding 
stress 0 < lb0 < 12000 psi and the frictional stress 500 d ,IF < 6000 psi 
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252 D. H. KAELBLE 

FIGUIiE 2 
matrix shear strength A, and interface frictional stress A F .  

Response surface of fiber debond length Lb (ordinate) for variable fiber- 

One clear fashion in which the present model predicts minimized fractured 
energy W , / A  = 0 is defined by Eq. (19) for the following inequality: 

2A,,(E;’2G)”y;(V) 2 (T, [L, = 01 (28) 

which points out that the composite described by Table 111 will display LI, = 
0 when lo 3 12100 psi. Equation (28) thus provides an initial design criteria 
which places an upper limit on &, where optimized fracture energy is a design 
criteria. It is important that the result obtained in  Eq. (28) does not depend 
upon the value of the frictional stress A F .  The left boundary of Figure 2, 
where A,, = 0, graphs the prediction for L, defined by the Cottrell theory:’ 

where L, is termed the critical fiber length. The generalization for predicted 
values of L1, provided by the present model is represented in Figure 2 by the 
response surface which interconnects the special cases defined by Eq. (28) 
and (29). 

The response surface for the frictional work per unit area W,,/A for the 
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FRACTURE ENERGY IN COMPOSITES 253 

maximum value of frictional pull out length L, = L,  is presented in Figure 3 
for the stress ranges shown previously for Lb (see Figure 2). The pertinent 
terms of Eq. (20) provide the following relation : 

By assuming L ,  = LI, and substituting Eq. (19) into Eq. (30) we obtain the 
following special relation : 

which defines the response surface of Figure 3. The response surface for 
Figure 3 predicts that the frictional pull-out work maximizes when both A,, 

,ROO 

. o ( l o J  p s 1 )  

FIGURE 3 
(ordinate) for variable shear stresses A,, and A ,  when A ,  ~ Lb. 

Respome surface for maximized frictional shear work per tinit area W,,/A 

and 2 ,  are reduced toward minimum values. The Cottrell theory for fracture 
energy can be stated in the following form:' 
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254 D. H. KAELBLE 

The left boundary curve of Figure 3 where I ,  = 0 is similar to the Cottrell 
criteria, Eq. (31), for total fracture energy. The refinement in the present 
argument again relates to the capability to calculate the independent influence 
of the interfacial shear strength lo in minimizing the value of W,,/A toward 
zero for the condition L, = 0 defined by Eq. (28). 

The shear work of matrix debonding Ws,/A is given by Eq. (20) as: 

By substituting Eq. (19) into Eq. (32) we obtain the following detailed 
statement: 

The response surface for W,,/A shown in Figure 4 maps the influence of both 

,800 

FIGURE 4 Response surface for matrix shear work per unit area Wsb/A (ordinate) for 
variable stresses A. and A e .  

2,. and A, for the model composite described by Table 111. Inspection of 
Figure 4 shows that W,, / A  optimizes at intermediate values of I , ,  21 6000 psi 
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FRACTURE ENERGY I N  COMPOSITIIS 255 

and ,IF < 2000 psi. The response surface generated by Figure 4 identifies a 
new mechanism for optimizing fracture energy not described in previous 
theory. 

The fracture energy due to bulk deformation of the fiber at fracture is 
defined from Eq. (20) as follows: 

For the model composite described by Table I11 it is easily shown that 
WBb/A is negligible compared to the sum (WFb + Wsh)/A. For the stress 
ranges shown in Figure 2 the maximum value W,,/A = 1.34 Ib/in occurs a t  
ilo = 0 and ,IF = 500 psi. 

The response surface of Figure 5 expresses the maximum value for the 

,800 

>,(103 p s i )  

FIGURE 5 
variable shear stresses A. and A,. 

Response surface for combined works per unit area (Wsb + W r J / A  for 

calculated fracture energy for the model composite, where Wb/A N ( WFb + 
Wsb)/A, for the special case where L ,  = L,. By summing the region of optim- 
ized fracture energy previously shown for the frictional (see Figure 3) and 
shear debonding (see Figure 4) a new broadened region of high fracture energy 
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256 D. H. KAELBLE 

where 0 d A,, d 6000 and 2, < 2000 is presented in Figure 5. In a real com- 
posite system where the statistics of fiber fracture provides a distribution for 
L,; where 0 < L, < L, the fracture energies will lie between the predictions 
of Figures 4 and 5. 

The curves of Figure 6 illustrate the above point for the model composite 
of Table I11 where A, = 2000psi. The upper curves of Figure 6 show the 
single and combined contributions for W,,/A and W,,/A for the maximum 
condition L,  = L,. The middle curves show the intermediate case where the 
fibers break an average distance L,  = Lb/2. The lower curves present the 
extreme L, = 0. When L, is reduced so that L, < L1, the stress criteria for 
optimum fracture energy is immediately dominated by the Ws,/A contri- 
bution. Considering that the fibers may tend to break so as to produce 
L, N Lb/2 places a new emphasis on optimizing the combination of factors 
in Eq. (32a) which maximize W,,/A. 

Inspection of Eq. (32a) shows that Ws$A is optimized when the product 
J ; (V )  - f ; ( V )  is maximized. The lower curve of Figure 7 plots the separate 
functions off;( V )  aiidf2( V )  for the square fiber packing described by Table 
111. The upper curve of Figure 7 shows a broad maximumf,( V)f2( V )  2 0.30 
at intermediate fiber volume fraction 0.4 d V < 0.60. The model composite 
described by Table I11 and Figure 2 through Figure 6 represent optimized 
W,,/A response with respect to the volume fraction V = 0.50 andfl( V)f2( V )  = 

0.320. 

CO R RE LATlO N WITH EXP E R I M E NTAL R ES U LTS 

One of the interesting results provided by the present model is the pre- 
diction that strong interfacial bonding, where 2, is beyond an optimum 
range, will lead to reduced values of both W,,/A and W,,/A. This finding 
correlates with experimental evidence that shows that good stress transmission 
through the composite tends to lower both impact strength and resistance 
to fatigue 

Experimental evidence for the existance of a shear bond strength 2, -+ 2, 
is available from the disc shear test discussed by Broutmann" and illustrated 
in Figure 8. In this test the primary force maximum correlates with the shear 
bond strength 2, of the present model. The subsequent resistance to pulling 
the fiber through the disc shaped annulus of matrix correlates with the 
frictional shear stress A,. While this test method has been applied to evaluate 
values of A,, and 2,: for glass rods of radius r, = 0.5 to 2.0 mm, it is unsuitable 
for composite materials such as represented in  Table 111. For example, 
single graphite fibers with ol, = 2.105 psi, v,, = 5.0 pm = 2.10-4 in and 
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I I I I I I ’  
300 - 

b LF = L 

--. 

FRACTURE ENERGY IN COMPOSITE’, 257 
300 I I I I I 1 1  

200 I I I I I I 

Wb/A LF = Lb/2 - 150 - - 

- 

0 2000 4000 6000 8000 10000 12000 
h 0  ( p s i )  

150 I I I I I I I 1  
LF  = 0 

WSb/A = Wb/A rool 50 

O O  2000 4000 6000 8000 10000 12000 

FIGURE 6 Influence of diminished fiber pull-out length L,  < L,, upon the relative con- 
tributions of WFb and W$b to the specific fracture energy W,,/A (IVY,, I W,.,)/A for 
variable A, and a fixed level of A, 3000 psi. 
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258 D. H. KAELBLE 

V 

V 

FIGURE 7 Optimization of the volume fraction functions f ; ( V ) ,  , j 2 ( b ' )  and product 
fi(V) . . f i ( V )  versus fiber volume fraction V. 

&, k 1000 psi would require a disc thickness t < 0.002 in which it is too small 
for practical testing. Througli Eq. (3), the present theory points out that to 
maintain a smaller than 10 percent variation in  shear stress A, a new thickness 
criteria t < 0.1 CI-'  is required as a further constraint on the disc geometry. 

The results of a study by Harris, Beaumont, and de Fcrran9 appear 10 
clearly correlate with the theoretical model developed in this discussion. In 
this study a uniaxially reinforced composite of graphite fiber, with volume 
fraction V _Y 0.40 i n  a thermosetting polyester matrix was evaluated for 
interface contributions to fracture energy and interlaminar shear strength. 
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FRACTURE ENERGY IN COMPOSITES 259 

CROSS HEAD DISPLACEMENT 

FIGURE 8 Schematic of disc shear test illustrating bond peak force ( “ c A o )  and frictiona 
force (cc h F )  - (from ref. 11). 

TABLE IV 
Correlation between interlaminar shear strength and fracture energy in graphite-polyester 

composites (data from ref. 9) 

Fracture work 
Interface Interlaminar 

treatment shear strength Charpy Slow bend 
(psi) (Ib/in) (Ib/in) 

~~ ~ 

1) untreated fiber- 
94 7 day steam exposure 1450 - 

2) silicone oil treated 1740 199 - 
3) untreated fiber- 

4) acid etched and 
no accelerated aging 2970 188 194 

brominated 3620 137-160 1 7 1-1 94 
5) silane treated 4000 166 120 
6) treated Morganite 8000 50 - 
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260 D. H. KAELRLE 

Table 1V arranges the data in the order of increasing interlaminar shear 
strength which appears to correlate with lo of the present discussion. Inter- 
face treatments ( I )  and (2) of Table IV were designed to weaken the fiber- 
matrix interface while treatments (4), (5) and (6) were designed to produce 
strong interfacial bonding. The plot of the fracture energy versus interlaminar 
shear strength shown in Figure 9 appear to correlate with the theoretical 

250 

200 

- 
C -. .r 

f 150 
v 

> 
W E w 

z w 

w 2 100 

2 
u 

50 

0 

FIGURE 9 Experimental correlation between fracture energy and interlaminar shear 
strength for graphite fiber/polyester matrix composites-(from ref. 9). 

curves of WbIA shown in Figure 6 when L ,  < L 12. The magnitudes of the 
calculated fracture energy shown by the lower curves of Figure 6 are in reason- 
able agreement with the experimental data of Figure 9. The theory embodied 
in Figure 6 also reflects the maximizing of fracture energy at intermediate 
bond strengths as in the data of Figure 9. 

SUMMARY AND CONCLUSIONS 

The effective fracture energy is decomposed in this discussion into a matrix 
shear work of debonding W S b ,  a frictional work of fiber pull-out WFb, and a 
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FRACTURE ENERGY IN COMPOSITES 26 1 

work of fiber extension to break WBb. A separation of the shear debonding 
stress 1, and debonding length L b  from the frictional stress 1, and pull-out 
length L,  provides greater detail to  the analysis of fracture energy contri- 
butions and the design factors which lead to specific optimizations of wsb and 
w,+ The analysis shows that W B b  is essentially negligible when compared 

Calculations based on the theoretical model identify the magnitudes of 
shear bond strength 1, and frictional stress 1, where the w s b  contribution to 
fracture energy are maximized and provide the dominant contribution to the 
total fracture energy. Adjusting the balance of fiber-matrix shear stresses 
A, and A F  in conjunction with fiber volume fraction V so as to maximize the 
w s b  contribution would appear to provide a new basis for designing both 
stress transmitting and energy absorption properties into fiber reinforced 
composite materials. A particularly interesting feature in adjusting w s b  to a 
maximized response is the feature that variations in shear bond strength A, 
due to environmental or mechanical fatigue damage should produce only 
minor changes in w s b .  

with the Sum wb N wsb -!- w p b .  
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APPENDIX A:  The Shear Stress Function 

The condition for equilibrium of internal forces (see Figure 1) provides that: 

d p + g = O  (A- 1 ) 

a = P/nro2 (A-2) 

dp = nrO2 d a  64-3) 

The fiber tensile stress a at L = 0 is: 

which upon differentiation and rearrangement becomes: 

The shear stress Ar varies with radius r, where r, < r < r ,  

Ar = -ql2nr dx 
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the shear strain y at position x and radius r is expressed in terms of shear 
displacement u as follows: 

The matrix shear modulus G is defined as: 

Yxr = dur/dr 

G = &/yr = -(q/2n dx)(dr/r)(l/dur) 

The total shear displacement u, of matrix element of length dx from radius 
ro to r l  is: 

u, = (-q/G)r' - drlr = ( - 4 / G )  In (rl Ira) 
2 n d ~  r = r o  2n dx 

Rearranging in terms of q provides: 
2nGu, dx 
In (rl P o )  

q =  - 

Substituting Eq. (A-3) and Eq. (A-4) into Eq. (A-I) provides: 

2Gu, dx 
do = 

ro2 In (r1b.o) 

The total fiber deformation at  x equals the matrix shear deformation ux. 
Therefore the tensile strain in increment dx is: 

du,ldx = a/E (A-6) 
Differentiating Eq. (A-5) gives : 

d2a 2G(du,/dx) 
dx2 roz In (rl /ro) 
- -  - 

Substituting the above expression into Eq. (A-6) provides : 

d2a (2GIE)a 
dx2 ro2 In ( r l / ro)  
-- - 

or: 

If we let: 

d2a (2GIE)a 
dx2 ro2 In ( r l / ro)  

= o  - -  

a2 = (2G/E)/ro2 In (rl/ro) 

then by operator notation Eq. (A-7) becomes: 

(D2 - a2)a = 0 
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solviiig Eq. (A-9) by standard methods we obtain: 

o = C, exp (-ax) + C, exp (ax) 

Since o = 0 at high negative values of x we obtain: 

c1 = 0 

C, = P/nrO2 

Differentiating Eq. (A-10) we obtain : 

do UP exp (ax) -- - C2a exp (ax) = 
dx nro2 

Recall that the shear stress at the fiber surface A,, is: 

and 
-q/dx = 2nGu /In ( r l / ro)  

Combining these relations provides : 

= Gudro In (r,/ro) 

Substituting Eq. (A-12) into Eq. (A-5) provides: 

2 l r n  - -  - 2Gu, do 
dx ro2 In ( r l / ro)  r, 
- -  - 

Combining Eq. (A-11) and Eq. (A-13) provides: 

aP exp (ax) 
2nr0 Arn = 

263 

(A-10) 

(A-1 1 )  

(A- 12) 

(A- 13) 

(A-14) 

For the boundary condition x = 0, r = r,, Eq. (A-14) becomes: 

A, = aP/2nro (A-15) 

Equation(A-14)is considered, within the frame of the simplifying assumptions, 
a general expression for fiber-matrix shear stress for all values of x < 0. 
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